Article Article
Characterization of the Critically Refracted Longitudinal (LCR) Waves and Their Use in Defect Detection

The critically refracted longitudinal (LCR) waves are used in various domains of nondestructive evaluation, especially for residual stress measurements. However, few works have characterized the associated ultrasonic beam. In this article, the characterization of the LCR ultrasonic beam, both numerically and experimentally, is first clarified in order to provide some answers to questions that arise about its behavior in elastic solids. The aim of the second part of this work is to investigate the use of the LCR waves for the detection of surface defects of different sizes in aluminum. For that, the effect of defects at fixed depth (5 mm) with various diameters (2, 4, 6, and 8 mm) and fixed diameter (8 mm) with various depths (5, 7, and 10 mm) in an aluminum sample have been investigated at frequencies around 1 MHz. It has been experimentally found that the amplitude of the (LCR) wave decreases and its frequency spectrum changes with a given defect. The rate of the decrease of the amplitude and the change in the spectrum is related to the increase of the defect depth. The study shows that the effect on the propagating of the LCR waves is larger as the defect depth increases.

References
1. D. E. Bray and W. Tang. Nuclear Engineering and Design 207:231–240 (2001). 2. F. Belahcene, X. Zhou, and J. Lu. Materials Science Forum 490:184–189 (2005). 3. D. E. Bray. 15th WCNDT, Rome, Italy (October 2000). 4. H Qozam, S. Chaki, G. Bourse, C. Robin, H. Walaszek, and P. Bouteille. Experimental Mechanics 50:179–185 (2010). 5. V. N. Danilov. Russian Journal of Nondestructive Testing 37:700–707 (2001). 6. L. V. Basatskaya and I. N. Ermolov. Soviet J. Nondestr. Testing (Defektoskopiya) 6:524–530 (1980). 7. S. Sathish, W. R. Martin, and J. T. Moran. J. Acoust. Soc. Am. 115:165–171 (2003). 8. J. C. Cauchman and J. R. Bell. Ultrasonics 272:272–274 (1978). 9. H. Uberall. Physical Acoustics. P. Mason and R. N. Thurston (eds.). Academic Press, New York (1973). 10. I. N. Ermolov. Russian Journal of Nondestructive Testing 40:655–678 (2004). 11. L. V. Yuozonene. Materials II. All-Soviet Conference on Methods and Techniques of Ultrasonic. Spectroscopy (pp. 87–88). Kaunas Polytechnical Institute, Kaunas, Lithuania (1973). 12. M. A. Breazeale and L. Bjorno. Proc. Ultrasonics International 77:440–447 (1977). 13. I. N. Ermolov, N. P. Razygrajev, and V. G. Shcherbinskii. Defectoscopy 1:33–40 (1978). 14. L. V. Yuozonene. Defectoscopy 1:29–38 (1980). 15. J. L. Rose. Ultrasonic Waves in Solid Media. Cambridge University Press, New York, NY (1999). 16. K. J. Langenberg, P. Fellinger, and R. Marklein. Res. Nondestr. Eval. 2:59–81 (1990). 17. K. Weina and S. Chaki. 10ème Congrès Français d’Acoustique, Lyon, France (April 2010). 18. S. Chaki, W. Ke, and H. Demouveau. Ultrasonics 53:65–69 (2013). 19. D. Royer and E. Dieulesaint. Ondes élastiques dans les solides. Vol. 1, pp. 220–223. Edition Masson, Paris, France (2000). 20. G. Bourse. Ph.D. dissertation. l’Université de Valencienne et du Hainaut Cambrésis, Valencienne, France (2008). 21. H. Medwin, E. Childs, and G. M. Jebsen. J. Acoust. Soc. Am. 72:1005–1013 (1982).
Metrics
Usage Shares
Total Views
77 Page Views
Total Shares
0 Tweets
77
0 PDF Downloads
0
0 Facebook Shares
Total Usage
77