Nondestructive Position Detection of a Metallic Target within Soil Substrate Using Electromagnetic Tomography

To determine the position of a metallic target in a cylindrical background made of soil, the electromagnetic tomography, as a nondestructive method, is employed. It is a difficult goal to produce precise electromagnetic tomography images using analytical methods. To cope with this issue, an artificial neural network is trained to mimic the electromagnetic tomography system. A hybrid optimization algorithm, which is a combination of intelligent global harmony search and Levenberg–Marquardt algorithms, is proposed to optimize the artificial neural network weights and biases. Simulation results show that the proposed method can estimate the position of target with an acceptable accurately.

1. R. A. Williams and M. S. Beck. (eds.). Process Tomography: Principles, Techniques and Applications. Butterworth Heinemann, Oxford, U.K. (1995). 2. M. Soleimani. International Journal of Numerical Analysis and Modeling 5:407–440 (2008). 3. A. J. Peyton, M. S. Beck, A. R. Borges, J. E. de Oliveira, G. M. Lyon, Z. Z. Yu, M. W. Brown, and J. Ferrerra. 1st World Congress on Industrial Process Tomography, Buxton, Greater Manchester, April 14–17, (1999). 4. A. J. Peyton, M. S. Beck, A. R. Borges, J. E. de Oliveira, G. M. Lyon, Z. Z. Yu, M. W. Brown, and J. Ferrerra. 1st World Congress on Industrial Process Tomography, Buxton, Greater Manchester, April 14–17, 1999. 5. R. Palka, S. Gratkowski, P. Baniukiewicz, M. Komorowski, and K. Stawicki. Studies in Computational Intelligence (SCI) 119:163–170 (2008). TABLE 2 SSE for IGHSþLMA, IGHS, LMA, and GA ANN method SSE test IGHSþLMA 0.170416 IGHS 0.261249 LMA 0.238957 GA 0.776442 NONDESTRUCTIVE POSITION 189 6. I. V. Denisov, Yu. N. Kulchin, A. V. Panov, and N. A. Rybalchenko. Optical Memory and Neural Networks 14:45–58 (2005). 7. N. Flores,A´ . Kuri-Morales, and C. Gamio. An application of neural networks for image reconstruction in electrical capacitance tomography applied to oil industry. 11th Iberoamerican Congress on Pattern Recognition, CIARP 2006, Cancu´n, Mexico, Nov. 14–17, 4225:371–380 (2006). 8. H. C. Kim and C. J. Boo. Intelligent optimization algorithm approach to image reconstruction in electrical impedance tomography. The 2nd International Conference on Natural Computation, 4221: 856–859 (2006). 9. B. Cannas, S. Carcangiu, F. Cau, A. Fanni, A. Montisci, and P. Testoni. Part of the Proceedings of the 10th International Conference on Engineering Applications of Neural Networks, August 29–31, 2007. 10. M. Zeinadini, S. Tavakoli, and A. Banookh. Journal of Telecommunications 3:22–25 (2010). 11. M. Gori and A. Tesi. IEEE Trans. Pattern Anal. Mach. Intell. 14:76–86 (1992). 12. X. Yao. Int. J. Intell. Syst. 8:539–567 (1993). 13. P. J. Angeline, G. M. Sauders, and J. B. Pollack. IEEE Trans. Neural Networks 5:54–65 (1994). 14. S. Shaw and W. Kinsner. Proc. of Canadian Conf. on Electrical and Computer Engineering 1:265–269 (1996). 15. S. K. Chang, O. A. Mohammed, and S. Y. Hahn. IEEE Trans. Magn. 30:3644–3647 (1994). 16. C. Zhang, H. Shao, and Y. Li. Proc. of IEEE Int. Conf. on System, Man, and Cybernetics 4:2487–2490 (2000). 17. Y. H. Shi and R. C. Eberhart. Proc. of 1998 Annual Conference on Evolutionary Programming, San Diego, 1998. 18. J. Salerno. Proc. of Ninth IEEE Int. Conf. on Tools with Artificial Intelligence 45–49 (1997). 19. E. Valian. M.Sc. dissertation, Faculty of Electrical and Computer Engineering, University of Sistan and Baluchestan, Zahedan, Iran, 2011. Available at 20. Z. W. Geem, J. H. Kim, and G. V. Loganathan. A new heuristic optimization algorithm: Harmony search. Simulation 76:60–68 (2001). 21. D. X. Zou, L. Q. Gao, J. H. Wu, S. Li, and Y. Li. Novel global harmony search algorithm for unconstrained problems. Neurocomputing 73:3308–3318 (2010). 22. R. C. Eberhart and J. Kennedy. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995, pp. 39–43. 23. J. Kennedy and R. C. Eberhart. Proceedings of IEEE International Conference on Neural Networks, 1995, pp. 1942–1948. 24. FEKO 5.4. Copyright 2005–2008, EM Software & Systems-S.A. (Pty) Ltd. 25. W. R. B. Lionheart. Physiological Measurement 25:125–142 (2004). 26. G. Lua, L. Penga, B. Zhang, and Y. Liao. Flow Measurement and Instrumentation 16:163–167 (2005). 27. R. Olmi, M. Bini, and S. Priori. IEEE Transactions on Evolutionary Computation 4(April 2000). 28. V. P. Rolnik and P. Seleghim Jr. J. Braz. Soc. Mech. Sci. and Eng. (online) 28:378–389 (2006). 29. B. Mhamdi, K. Grayaa, and T. Aguili. AEU – International Journal of Electronics and Communications 65:140–147 (2011). 30. H.-C. Kim and C.-J. Boo. Lecture Notes in Computer Science 4221:856–859 (2006). 31. C. Wang, J. Lang, and H.-X. Wang RBF neural network image reconstruction for electrical impedance tomography. Proceedings of 2004 International Conference on Machine Learning and Cybernetics 4:2549–2552 (2004). 32. P. Wang, L.-L. Xie and Y.-C. Sun. International Conference on Machine Learning and Cybernetics 1064–1059 (2009).
Usage Shares
Total Views
8 Page Views
Total Shares
0 Tweets
0 PDF Downloads
0 Facebook Shares
Total Usage