This work reports nondestructive evaluation of reinforcing bars that are corroding in the
presence and absence of chlorides utilizing ultrasonic guided waves. The effect of rates
of corrosion and its progression in the two environments on the ultrasonic signals is
discussed. Surface and core seeking guided wave modes were used to monitor beams
undergoing accelerated impressed current corrosion. Effective combination of guided wave
modes could relate to the differences in corrosion mechanisms and rates in the two environments.
Calibration of the ultrasonic data with the physical condition of the bar in the two
environments has been attempted. It is done by conducting destructive tests of mass loss,
tensile strength, and pull out strength at different stages of corrosion.
1. J. P. Broomfield. Corrosion of Steel in Concrete: Understanding, Investigation and Repair. 2nd Ed.
Taylor and Francis, London and New York (2007).
2. B. N. Pavlakovic. Ph.D. Thesis, Department of Mechanical Engineering, Imperial College of Science
Technology and Medicine, London (1998).
3. B. N. Pavlakovic, M. J. S. Lowe, and P. Cawley. International Journal of Applied Mechanics 68:67–75
(2001).
4. S. Chaki and G. Bourse. Ultrasonics 49:162–171 (2009).
5. F. Wu and F. K. Chang. Structural Health Monitoring 5:5–15 (2006).
6. C. He, J. K. Van Velsor, C. M. Lee, and J. L. Rose. Health monitoring of rock bolts using ultrasonic
guided waves, quantitative nondestructive evaluation. In: D. O. Thomson and D. E. Chimneti,
(eds.), AIP Conference Proceedings, Aarhus, Denmark, June 25–29, Vol. 820, pp. 195–201 (2005).
7. W. Na, T. Kundu, and M. R. Ehsani. Materials Evaluation 60:437–444 (2002).
8. H. Reis, B. L. Ervin, D. A. Kuchma, and J. T. Bernhard. Journal of Pressure Vessel Technology
127:255–261 (2005).
9. M. D. Beard. Ph.D. Thesis, University of London, London (2002).
10. T. Kundu, S. Banerjee, and K. V. Jata. Journal of Acoustical Society of America. 12093:1217–1226
(2006).
11. T. Miller, C. J. Hauser, and T. Kundu. Proc. of ASME NDE Division Symposium 23:121–128 (2002).
12. P. A. Gaydecki, F. M. Burdekin, W. Damaj, D. G. John, and P. A. Payne. Measurement Science and
Technology 3:909–917 (1992).
13. B. L. Ervin and H. Reis. Measurement Science and Technology 19:1–19 (2008).
14. B. L. Ervin, D. A. Kuchma, J. T. Bernhard, and H. Reis. Journal of Engineering Mechanics 135:9–19
(2009).
15. S. Sharma and A. Mukherjee. Structural Health Monitoring 9:555–567 (2010).
16. S. Sharma and A. Mukherjee. ASCE, Journal of Materials in Civil Engineering 23:207–211 (2011).
17. M. J. S. Lowe. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42:525–542 (1995).
18. B. N. Pavlakovic and P. Cawley. DISPERSE User’s Manual Version 2.0.1.1. Imperial College,
University of London, London (2000).
19. M. G. Silk and K. F. Bainton. Ultrasonics 17:11–19 (1979).
20. B. N. Pavlakovic, M. J. S. Lowe, and P. Cawley. Insight 41:446–452 (1999).
21. J. L. Rose. Ultrasonic Waves in Solid Media. University Press, Cambridge, U.K. (1999).
22. M. H. Alaibadi, S. Abela, S. Baragetti, M. Guagliano, and H.-S. Lee. Key Engineering Materials
417–418:357–360 (2009).
23. T. H. Nguyen, C. D. Smart, and L. C. Lynnworth. Materials Evaluation 62:690–698 (2004).
24. W. Na, T. Kundu, and M. R. Ehsani. Materials Evaluation 61:155–161 (2003).
25. M. D. Beard, M. J. S. Lowe, and P. Cawley. Journal of Materials in Civil Engineering, ASCE 15:
212–218 (2003).