Nondestructive Evaluation of Corrosion in Varying Environments Using Guided Waves

This work reports nondestructive evaluation of reinforcing bars that are corroding in the presence and absence of chlorides utilizing ultrasonic guided waves. The effect of rates of corrosion and its progression in the two environments on the ultrasonic signals is discussed. Surface and core seeking guided wave modes were used to monitor beams undergoing accelerated impressed current corrosion. Effective combination of guided wave modes could relate to the differences in corrosion mechanisms and rates in the two environments. Calibration of the ultrasonic data with the physical condition of the bar in the two environments has been attempted. It is done by conducting destructive tests of mass loss, tensile strength, and pull out strength at different stages of corrosion.

1. J. P. Broomfield. Corrosion of Steel in Concrete: Understanding, Investigation and Repair. 2nd Ed. Taylor and Francis, London and New York (2007). 2. B. N. Pavlakovic. Ph.D. Thesis, Department of Mechanical Engineering, Imperial College of Science Technology and Medicine, London (1998). 3. B. N. Pavlakovic, M. J. S. Lowe, and P. Cawley. International Journal of Applied Mechanics 68:67–75 (2001). 4. S. Chaki and G. Bourse. Ultrasonics 49:162–171 (2009). 5. F. Wu and F. K. Chang. Structural Health Monitoring 5:5–15 (2006). 6. C. He, J. K. Van Velsor, C. M. Lee, and J. L. Rose. Health monitoring of rock bolts using ultrasonic guided waves, quantitative nondestructive evaluation. In: D. O. Thomson and D. E. Chimneti, (eds.), AIP Conference Proceedings, Aarhus, Denmark, June 25–29, Vol. 820, pp. 195–201 (2005). 7. W. Na, T. Kundu, and M. R. Ehsani. Materials Evaluation 60:437–444 (2002). 8. H. Reis, B. L. Ervin, D. A. Kuchma, and J. T. Bernhard. Journal of Pressure Vessel Technology 127:255–261 (2005). 9. M. D. Beard. Ph.D. Thesis, University of London, London (2002). 10. T. Kundu, S. Banerjee, and K. V. Jata. Journal of Acoustical Society of America. 12093:1217–1226 (2006). 11. T. Miller, C. J. Hauser, and T. Kundu. Proc. of ASME NDE Division Symposium 23:121–128 (2002). 12. P. A. Gaydecki, F. M. Burdekin, W. Damaj, D. G. John, and P. A. Payne. Measurement Science and Technology 3:909–917 (1992). 13. B. L. Ervin and H. Reis. Measurement Science and Technology 19:1–19 (2008). 14. B. L. Ervin, D. A. Kuchma, J. T. Bernhard, and H. Reis. Journal of Engineering Mechanics 135:9–19 (2009). 15. S. Sharma and A. Mukherjee. Structural Health Monitoring 9:555–567 (2010). 16. S. Sharma and A. Mukherjee. ASCE, Journal of Materials in Civil Engineering 23:207–211 (2011). 17. M. J. S. Lowe. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42:525–542 (1995). 18. B. N. Pavlakovic and P. Cawley. DISPERSE User’s Manual Version Imperial College, University of London, London (2000). 19. M. G. Silk and K. F. Bainton. Ultrasonics 17:11–19 (1979). 20. B. N. Pavlakovic, M. J. S. Lowe, and P. Cawley. Insight 41:446–452 (1999). 21. J. L. Rose. Ultrasonic Waves in Solid Media. University Press, Cambridge, U.K. (1999). 22. M. H. Alaibadi, S. Abela, S. Baragetti, M. Guagliano, and H.-S. Lee. Key Engineering Materials 417–418:357–360 (2009). 23. T. H. Nguyen, C. D. Smart, and L. C. Lynnworth. Materials Evaluation 62:690–698 (2004). 24. W. Na, T. Kundu, and M. R. Ehsani. Materials Evaluation 61:155–161 (2003). 25. M. D. Beard, M. J. S. Lowe, and P. Cawley. Journal of Materials in Civil Engineering, ASCE 15: 212–218 (2003).
Usage Shares
Total Views
6 Page Views
Total Shares
0 Tweets
0 PDF Downloads
0 Facebook Shares
Total Usage