Article Article
Comparison of Dynamic Differential Evolution and Self-Adaptive Dynamic Differential Evolution for Buried Metallic Cylinder

The application of two techniques for the reconstruction of shape reconstruction of a metallic cylinder from scattered field measurements is studied in this paper. These techniques are applied to two-dimensional configurations, for which the method of moment (MoM) is applied to solve the integral equations. Considering that the microwave imaging is recast as a nonlinear optimization problem, an objective function is defined by the norm of the difference between the measured scattered electric fields and those calculated for each estimated metallic cylinder. Thus, the shape of a metallic cylinder can be obtained by minimizing the objective function. In order to solve this inverse scattering problem, two techniques are employed. The first one is based on dynamic differential evolution (DDE) algorithm, while the second one is an improved version of the DDE algorithm with self-adaptive control parameters, called SADDE. Both techniques are tested for the simulated data contaminated by additive white Gaussian noise. Numerical results indicate that SADDE algorithm outperforms DDE algorithm in terms of reconstruction accuracy and convergence speed.

References
1. C. C. Chiu, C. H. Sun, and Y. S. Fan. Imaging Science Journal 60:83–89 (2012). 2. A. Semnani, I. T. Rekanos, M. Kamyab, and T. G. Papadopoulos. IEEE Trans. Antennas Propag. 58:3289–3298 (2010). 3. L. Pan, Y. Zhong, X. Chen, and S. P. Yeo. IEEE Trans. Geosci. Remote Sensing 49:981–987 (2011). 4. C. H. Sun, C. L. Li, C. C. Chiu, and C. H. Huang. Research in Nondestructive Evaluation 22:1–15 (2011). 5. T. Moriyama, Z. Meng, and T. Takenaka. Microwave and Optical Technology Letters 53:438–442 (2011). 6. F. Soldovieri, F. Ahmad, and R. Solimene. IEEE Transactions Geoscience and Remote Sensing 8:123– 127 (2011). 7. M. Benedetti, D. Lesselier, M. Lambert, and A. Massa. IEEE Transactions Geoscience and Remote Sensing 48:2330–2342 (2010). 8. C. H. Chen, C. C. Chiu, C. H. Sun, and W. L. Chang. Journal of Applied Remote Sensing 5:053522 (2011). 9. C. H. Sun, C. C. Chiu, and C. J. Lin. International Journal of Applied Electromagnetics and Mechanics 34:33–48 (2010). 10. L.-P. Song, C. Yu, and Q. H. Liu. IEEE Transactions on Geoscience and Remote Sensing 43:2793– 2798 (2005). 11. M. Cayoren, I. Akduman, A. Yapar, and L. Crocco. IEEE Geosci. Remote Sens. Lett. 5:383–386 (2008= 2009). 12. M. El-Shenawee, O. Dorn, and M. Moscoso. IEEE Trans. Antennas Propag. 57:520–534 (2009). 13. I. Catapano, L. Crocco, and T. Isernia. IEEE Transactions on Geoscience and Remote Sensing 46:3265–3273 (2008). 14. T. Rubæk, P. M. Meaney, P. Meincke, and K. D. Paulsen. IEEE Trans. Antennas Propag. 55:2320– 2331 (2007). 15. Denisov, A. M. Elements of Theory of Inverse Problems. VSP, Utrecht, The Netherlands (1999). 16. C. H. Sun, C. L. Liu, K. C. Chen, C. C. Chiu, C. L. Li, and C. C. Tasi. Electromagnetics 28:389–400 (2008). 17. W. Chien, C. H. Sun, and C. C. Chiu. International Journal of Imaging Systems and Technology 19:299–305 (2009). 18. X. M. Zhong, C Liao, and W. Chen. Journal of Electromagnetic Waves Application 21:25–34 (2007). 19. W. Chien and C. C. Chiu. IEEE Transactions on Antennas and Propagation 53:3128–3134 (2005). 20. A. Massa, D. Franceschini, G. Franceschini, M. Pastorino, M. Raffetto, and M. Donelli. IEEE Transaction on Antennas and Propagation 53:3118–3127 (2005). 21. A. Qing. IEEE Transactions on Geoscience and Remote Sensing 44:116–125 (2006). 22. C. H. Sun, C. C. Chiu, C. L. Li, and C. H. Huang. Electromagnetics 30:309–323 (2010). 23. C. H. Sun, C. C. Chiu, W. Chien, and C. L. Li. Journal of Electronic Imaging 19:043016 (2010). 24. C. H. Sun and C. C. Chiu. International Journal of RF and Microwave Computer-Aided Engineering 22:141–146 (2012). 25. C. C. Chiu and W. C. Hsiao. Waves in Random and Complex Media 21:485–500 (2011). 26. I. T. Rekanos. IEEE Transactions on Geoscience and Remote Sensing 46:1967–1974 (2008). MICROWAVE IMAGING FOR BURIED METALLIC CYLINDER 49 27. C. H. Huang, C. C. Chiu, C. L. Li, and K. C. Chen. Progress In Electromagnetic Research (PIER) 82:381–400 (2008). 28. C. H. Sun, C. C. Chiu, and C. L. Li. Progress In Electromagnetic Research M. (PIER M) 14:85–100 (2010). 29. X. Chen. IEEE Transactions on Geoscience and Remote Sensing 48:42–49 (2010). 30. L. Pan, Y. Zhong, X. Chen, and S. P. Yeo. IEEE Transactions on Geoscience and Remote Sensing 49:981–981 (2011). 31. C. C. Chiu and Y. W. Kiang. IEEE Transactions on Antennas and Propagation 40:933–941 (1992). 32. K. C. Lee. International Journal of RF and Microwave Computer-Aided Engineering 4:398–403 (2004). 33. M. R. Hajihashemi, and M. E. Shenawee. IEEE Transactions on Geoscience and Remote Sensing 48:1159–1168 (2010). 34. J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer. IEEE Transactions on Evolutionary Computation 10:646–657 (2006). 35. R. Storn and K. Price. Technical Report TR-95-012. International Computer Science Institute, Berkeley (1995). 36. B. Sai and P. van Genderen. Proc. International Conference on Radar Systems, Brest, France, May 17–21, 1999, Session 1.7, pp. 1–5.
Metrics
Usage Shares
Total Views
24 Page Views
Total Shares
0 Tweets
24
0 PDF Downloads
0
0 Facebook Shares
Total Usage
24