
We present a hybrid acoustic imaging system to directly visualize acoustic waves propagating within a single anisotropic crystalline plate. An acoustic lens (point focus, continuous wave, frequency; 180 MHz) was used to form a point source (diameter of point: approximately 5 lm) within the silicon plate. A laser interferometric system was used to visualize the acoustic wave propagation. Distinct amplitude patterns at each focal plane were experimentally visualized. The patterns are also theoretically calculated with an Angular Spectrum of Plane Waves method.
1. C. F. Quate. Physics Today 38:34–42 (1985).
2. N. Chubachi. In Rayleigh-Wave Theory and Application. E. A. Ash and E. G. S. Paige (eds.), Proceedings of an International Symposium Organized by the Rank Prize Funds at the Royal Institution, London, July 15–17, 1985, pp. 291–297.
3. J. Kushibiki and N. Chubachi. IEEE Trans. SU-32:189–212 (1985).
4. R. D. Weglein. Appl. Phys. Lett. 34:179–181 (1979).
5. W. Parmon and H. L. Bertoni. Electron. Lett. 15:684–686.
6. A. Atalar. J. Appl. Phys. 49:5130–5139 (1978).
7. K. Liang, G. S. Kino, and B. T. Khuri-Yakub. IEEE Trans. SU-32:213–224 (1985).
8. K. L. Telschow. IEEE Trans. 50:1279–1285 (2003).
9. K. L. Telschow, V. A. Dearson, D. L. Cottle, and J. D. Larson III. IEEE Ultrasonics Symposium pp. 601–604, (2002).
10. K. L. Telschow, V. A. Dearson, D. L. Cottle, and J. D. Larson III. IEEE Ultrasonics Symposium pp. 631–634, (2000).
11. K. L. Telschow, V. A. Dearson, R. S. Schley, and S. M. Watson. J. Acoust. Soc. Am. 106:2578–2587 (1999).
12. M. F. Hamilton, Yuri A. Il’inskii, and E. A. Zabolotskaya. J. Acoust. Soc. Am. 105:639–651 (1999).
13. D. J. Vezzetti. J. Acoust. Soc. Am. 78:1103–1108 (1985).
Usage | Shares |
---|---|
Total Views 11 Page Views |
Total Shares 0 Tweets |
11 0 PDF Downloads |
0 0 Facebook Shares |
Total Usage | |
11 |