A framework for the analysis of planar driver–pickup coil arrays is presented by examining
the response of a pair of planar circular spiral coils. Closed-form expressions are presented
for the (i) mutual inductance of the coils in air, (ii) change in mutual impedance for the coils
above a conductive linear ferromagnetic half-space, and (iii) change in mutual impedance
for the coils in the thin-skin regime due to a long slot with uniform depth and width. The
model predictions are compared with experimental measurements over the frequency range
100Hz to 10MHz using both Al-alloy and steel test specimens. When used within their
known range of validity, the model predictions are in good agreement with experiment.
The results demonstrate the flexibility and sensitivity of planar driver–pickup coils in
eddy-current nondestructive evaluation.
1. B. A. Auld. In Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and
D. E. Chimenti (eds.), vol. 10A, pp. 951–955 (1991). Plenum, New York.
2. M. Mayos and J. L. Muller. J. Nondestruct. Eval. 6:109–116 (1987).
3. V. S. Cecco, J. R. Carter, and S. P. Sullivan. Mater. Eval. 51:572–577 (1993).
4. M. E. Ibrahim and S. K. Burke. Non-Destruct. Test. Aust. 43:9–15 (2006).
5. M. Mayos, S. Mastorchio, L. Aubry, and K. Miya. Electromagnetic Nondestructive Evaluation, D. Lesselier
and A. Razek (eds.), vol. 3, pp. 208–216 (1999). IOS Press, Amsterdam.
6. W. N. Podney. IEEE T. Appl. Supercon. 9:3483–3486 (1999).
7. C. Gilles-Pascaud, J. M. Decitre, F. Vacher, C. Fermon, M. Pannetier, and G. Cattiaux. In Review
of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D. E. Chimenti (eds.),
vol. 25A, pp. 399–406 (2006). American Institute of Physics, Melville, New York.
8. V. Zilberstein, D. Grundy, V. Weiss, N. Goldfine, E. Abramovici, J. Newman, and T. Yentzer. Int. J.
Fatigue 27:1644–1652 (2005).
9. A. E. Crouch and T. H. Goyen, Defect assessment using conformable array data, DOE Contract No.
DE-FC26-02NT41644, SwRI Project 14.06239. Southwest Research Institute, San Antonio, TX (2003).
10. M. Uesaka, K. Hakuta, K. Miya, A. Kazuhiko, and A. Takahashi. IEEE Trans. Magn. 34:2287–2297
(1998).
11. D. C. Hurley, K. H. Hedengren, P. J. Howard, W. P. Kornrumpf, G. E. Sutton, and J. D. Young.
In Review of Progress in Quantitative Evaluation, D. O. Thompson and D. E. Chimenti (eds.),
vol. 13, pp. 1111–1118 (1994). Plenum Press, New York.
12. Y. D. Krampfner and D. D. Johnson. Review of Progress in Quantitative Nondestructive Evaluation, D.
O. Thompson and D. E. Chimenti (eds.), vol. 7A, pp. 471–478 (1988). Plenum Press, New York.
13. R. J. Ditchburn, S. K. Burke, and M. Posada. J. Nondestruct. Eval. 22:63–77 (2003).
14. R. J. Ditchburn and S. K. Burke. NDT&E Int. 38:690–700 (2005).
15. J. Fava and M. Ruch. NDT&E Int. 39:414–424 (2006).
16. J. R. Bowler and N. Harfield. IEEE Trans. Magn. 34:515–523 (1998).
17. C. V. Dodd and W. E. Deeds. J. Appl. Phys. 39:2829–2838 (1968).
18. I. S. Gradshteyn and I. M. Ryzhik. In Tables of Integrals, Series, and Products, 4th ed., p. 979 (1965).
Academic Press, New York.
19. S. K. Burke and M. E. Ibrahim. J. Phys. D: Appl. Phys. 37:1857–1868 (2004).
20. N. Harfield and J. R. Bowler. J. Appl. Phys. 82:4590–4603 (1997).
21. B. A. Auld and J. C. Moulder. J. Nondestruct. Eval. 18:3–36 (1999).
22. N. Bowler. In Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and
D. E. Chimenti (eds.), vol. 25, pp. 1269–1276 (2006). American Institute of Physics, Melville,
New York.
23. J. C. Moulder, C.-C. Tai, B. F. Larson, and J. H. Rose. IEEE Trans. Magn. 34:505–514 (1998).
24. T. P. Theodoulidis. IEEE Trans. Magn. 41:2447–2454 (2005).