Subjected to in-service and environmental loads, even relatively new structural components
may reveal signs of microscopic deterioration. Very often, this initial damage further progresses
into meso- and macroscales leading to development of one or several macrocracks that cause
ultimate structural failure. Although the onset of macroscale cracking can be reliably detected
by modern NDE methodologies, there is an increasing need for inspection technologies that
may allow for assessing structural damage at a wide range of scales, i.e., from micro to macro.
This article explores application of the nonlinear acoustic vibro-modulation technique (VMT) to
incipient damage detection and monitoring. The nonlinear acoustic detection of the macroscopic
damage is illustrated with examples: inspection of the cast aluminum automotive parts
and testing of the aging aircraft fuselage. The microscale damage assessment is realized by
real-time monitoring of the acoustic nonlinearity in the strain controlled three-point-bending
fatigue test. In the experiment, a stable increase of the nonlinear response during specimen
fatigue was observed indicating early damage accumulation before the macroscopic fracture.
1. A. Chudnovsky and C. P. Bosnyak. Intrinsic Time and Aging. In Handbook of Modern Sensors, 2nd ed.,
J. Fraden (ed.), (1996). American Institute of Physics Press, Woodbury, NY.
2. L. M. Kachanov. Introduction to Continuum Damage Mechanics (1986). Kluwer Academic Publishers,
Dordrecht.
3. J. H. Cantrell and W. T. Yost. Proc. QNDE 12:2059–2066 (1993).
4. K.-Y. Jhang and K.-C. Kim. Ultrasonics 37:39–44 (1999).
5. J. Frouin, S. Sathish, and J. K. Na. Proc. SPIE 3993:60–67 (2000).
6. M. Akino, T. Mihara, and K. Yamanaka. Proc. QNDE 23B:1256–1263 (2003).
7. K. E. Van Den Abeele, P. A. Johnson, R. A. Guyer, and K. R. McCall. J. Acoust. Soc. Am. 101(4):1885–
1898 (1997).
8. R. A. Guyer and P. A. Johnson. Physics Today 52:30–35 (1999).
9. K. E. Van Den Abeele, J. Carmeliet, J. A. Ten Cate, and P. A. Johnson. Research in Nondestructive
Evaluation 12(1):31–42 (2000).
10. O. Buck, W. L. Morris, and J. M. Richardson. Appl. Phys. Let. 33(5):371–372 (1978).
11. V. A. Antonets, D. M. Donskoy, and A. M. Sutin. Mech. Comp. Mat. 15:934–937 (1986).
12. S. Hirsekorn. Ultrasonics 39:57–68 (2001).
13. R. E. Guerjouma, M. Bentahar, H. Nechad, N. Godin, and T. Monnier. Proc. 2nd European Workshop
on Structural Health Monitoring, July 7–9, 2004, Munich, Germany.
14. K. E. Van Den Abeele and J. De Visscher. Cement and Concrete Research 30:1453–1464 (2000).
15. D. E. Adams and M. Nataraju. Int. J. Eng. Sci. 40(17):1919–1941 (2002).
16. B. I. Epureanu, S. H. Yin, and M. M. Derriso. Smart Mat. Struct. 14(2):321–327 (2005).
17. D. M. Donskoy and A. M. Sutin. J. Intell. Mat. Syst. Struct. 9:765–771 (1998).
18. D. Donskoy, A. Sutin, and A. Ekimov. NDT&E Int. 34:231–238 (2001).
19. J.-Y. Kim, V. A. Yakovlev, and S. I. Rokhlin. J. Acoust. Soc. Am. 115(5):1961–1972 (2004).
20. K. Warnemuende and H.-C. Wu. Proc. SPIE 5394:127–138 (2004).
21. C. R. P. Courtney, B. W. Drinkwater, S. A. Neild, and P. D. Wilcox. NDT&E Int. 41: 223–234 (2007).
22. A. N. Zagrai, D. Donskoy, and J. L. Lottiaux. Proc. QNDE 23B:1414–1421 (2003).
23. S. W. Doebling, C. R. Farrar, M. B. Prime, and D. W. Shevitz. LA-13070-MS, May (1996).
24. N. Krohn, R. Stoessel, and G. Busse. Ultrasonics 40:663–637 (2002).
25. I. Yu. Solodov. Proc. WCU, Paris, September 7–10 (2003).
26. http://www.intrepidmuseum.org