Article Article
Micro- and Macroscale Damage Detection Using the Nonlinear Acoustic Vibro-Modulation Technique

Subjected to in-service and environmental loads, even relatively new structural components may reveal signs of microscopic deterioration. Very often, this initial damage further progresses into meso- and macroscales leading to development of one or several macrocracks that cause ultimate structural failure. Although the onset of macroscale cracking can be reliably detected by modern NDE methodologies, there is an increasing need for inspection technologies that may allow for assessing structural damage at a wide range of scales, i.e., from micro to macro. This article explores application of the nonlinear acoustic vibro-modulation technique (VMT) to incipient damage detection and monitoring. The nonlinear acoustic detection of the macroscopic damage is illustrated with examples: inspection of the cast aluminum automotive parts and testing of the aging aircraft fuselage. The microscale damage assessment is realized by real-time monitoring of the acoustic nonlinearity in the strain controlled three-point-bending fatigue test. In the experiment, a stable increase of the nonlinear response during specimen fatigue was observed indicating early damage accumulation before the macroscopic fracture.

1. A. Chudnovsky and C. P. Bosnyak. Intrinsic Time and Aging. In Handbook of Modern Sensors, 2nd ed., J. Fraden (ed.), (1996). American Institute of Physics Press, Woodbury, NY. 2. L. M. Kachanov. Introduction to Continuum Damage Mechanics (1986). Kluwer Academic Publishers, Dordrecht. 3. J. H. Cantrell and W. T. Yost. Proc. QNDE 12:2059–2066 (1993). 4. K.-Y. Jhang and K.-C. Kim. Ultrasonics 37:39–44 (1999). 5. J. Frouin, S. Sathish, and J. K. Na. Proc. SPIE 3993:60–67 (2000). 6. M. Akino, T. Mihara, and K. Yamanaka. Proc. QNDE 23B:1256–1263 (2003). 7. K. E. Van Den Abeele, P. A. Johnson, R. A. Guyer, and K. R. McCall. J. Acoust. Soc. Am. 101(4):1885– 1898 (1997). 8. R. A. Guyer and P. A. Johnson. Physics Today 52:30–35 (1999). 9. K. E. Van Den Abeele, J. Carmeliet, J. A. Ten Cate, and P. A. Johnson. Research in Nondestructive Evaluation 12(1):31–42 (2000). 10. O. Buck, W. L. Morris, and J. M. Richardson. Appl. Phys. Let. 33(5):371–372 (1978). 11. V. A. Antonets, D. M. Donskoy, and A. M. Sutin. Mech. Comp. Mat. 15:934–937 (1986). 12. S. Hirsekorn. Ultrasonics 39:57–68 (2001). 13. R. E. Guerjouma, M. Bentahar, H. Nechad, N. Godin, and T. Monnier. Proc. 2nd European Workshop on Structural Health Monitoring, July 7–9, 2004, Munich, Germany. 14. K. E. Van Den Abeele and J. De Visscher. Cement and Concrete Research 30:1453–1464 (2000). 15. D. E. Adams and M. Nataraju. Int. J. Eng. Sci. 40(17):1919–1941 (2002). 16. B. I. Epureanu, S. H. Yin, and M. M. Derriso. Smart Mat. Struct. 14(2):321–327 (2005). 17. D. M. Donskoy and A. M. Sutin. J. Intell. Mat. Syst. Struct. 9:765–771 (1998). 18. D. Donskoy, A. Sutin, and A. Ekimov. NDT&E Int. 34:231–238 (2001). 19. J.-Y. Kim, V. A. Yakovlev, and S. I. Rokhlin. J. Acoust. Soc. Am. 115(5):1961–1972 (2004). 20. K. Warnemuende and H.-C. Wu. Proc. SPIE 5394:127–138 (2004). 21. C. R. P. Courtney, B. W. Drinkwater, S. A. Neild, and P. D. Wilcox. NDT&E Int. 41: 223–234 (2007). 22. A. N. Zagrai, D. Donskoy, and J. L. Lottiaux. Proc. QNDE 23B:1414–1421 (2003). 23. S. W. Doebling, C. R. Farrar, M. B. Prime, and D. W. Shevitz. LA-13070-MS, May (1996). 24. N. Krohn, R. Stoessel, and G. Busse. Ultrasonics 40:663–637 (2002). 25. I. Yu. Solodov. Proc. WCU, Paris, September 7–10 (2003). 26.
Usage Shares
Total Views
158 Page Views
Total Shares
0 Tweets
0 PDF Downloads
0 Facebook Shares
Total Usage