The electroacoustic measurement model (EAM model) is a model that combines models and
measurements for all the electrical and electromechanical components and the acoustic=
elastic wave propagation and scattering processes present in an ultrasonic measurement
system to predict the measured output voltage. A new approach for implementing the
EAM model is described. This approach uses a recently developed model-based pulse–echo
method for determining the transducer electrical impedance and sensitivity. This method
greatly simplifies the determination of the transducer sensitivity and as a consequence
makes the entire EAM model more practical to implement. The experimental protocols
needed to implement this simplified EAM model are described, and examples of experimentally
determined characteristics of all the different system components are presented. These
measured=modeled parameters of the system components are combined to predict the output
signal in an ultrasonic immersion measurement system. It is shown that output signals
obtained in this fashion agree well with the directly measured signals.
1. L. J. Ziomek. Underwater Acoustics—A Linear Systems Theory Approach. Academic Press, New York
(1985).
2. W. Sachse and N. N. Hsu. In Physical Acoustics—Principles and Methods, W. P. Mason and
E. N. Thurston (eds.), vol. 14, pp. 277–406 (1979). Academic Press, New York.
3. B. A. Auld. Wave Motion 1:3–10 (1979).
4. L. W. Schmerr. Fundamentals of Ultrasonic Nondestructive Evaluation—A Modeling Approach.
Plenum Press, New York (1998).
5. C. J. Dang, L. W. Schmerr Jr., and A. Sedov. Res. Nondestr. Eval. 14:141–176 (2002).
7. C. J. Dang, L. W. Schmerr Jr., and A. Sedov. Res. Nondestr. Eval., 14:203–228 (2002).
8. W. R. MacLean. J. Acoust. Soc. Am. 12:140–146 (1940).
9. A. Lopez-Sanchez and L. W. Schmerr. IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency
Control 53:2101–2112 (2006).
10. M. Greenspan. J. Acoustic. Soc. Am. 65:608–621 (1979).
11. A. L. DiMattia and F. M. Wiener. J. Acoust. Soc. Am. 18:341–344 (1946).
12. P. Ebaugh and R. E. Mueser. J. Acoust. Soc. Am. 19:695–700 (1947).
13. W. Wathen-Dunn. J. Acoust. Soc. Am. 21:542–546 (1949).
14. K. Brendel and G. Ludwig. Acustica 36:203–208 (1976=77).
42 A. L. LOPEZ-SANCHEZ AND L. W. SCHMERR JR.
6. C. J. Dang, L. W. Schmerr Jr., and A. Sedov. Res. Nondestr. Eval. 14:177–201 (2002).
7. C. J. Dang, L. W. Schmerr Jr., and A. Sedov. Res. Nondestr. Eval., 14:203–228 (2002).
8. W. R. MacLean. J. Acoust. Soc. Am. 12:140–146 (1940).
9. A. Lopez-Sanchez and L. W. Schmerr. IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency
Control 53:2101–2112 (2006).
10. M. Greenspan. J. Acoustic. Soc. Am. 65:608–621 (1979).
11. A. L. DiMattia and F. M. Wiener. J. Acoust. Soc. Am. 18:341–344 (1946).
12. P. Ebaugh and R. E. Mueser. J. Acoust. Soc. Am. 19:695–700 (1947).
13. W. Wathen-Dunn. J. Acoust. Soc. Am. 21:542–546 (1949).
14. K. Brendel and G. Ludwig. Acustica 36:203–208 (1976=77).
15. G. E. Dace, R. B. Thompson, and O. Buck. In Review of Progress in Quantitative Nondestructive
Evaluation, D. O. Thompson and D. Chimenti (eds.), vol. 11B, pp. 2069–2076 (1992). Plenum Press,
New York.
16. H. J. Kim, J. S. Park, S. J. Song, and L. W. Schmerr. J. Nondestr. Eval. 23:81–93 (2004).
17. B. Fay and H. P. Reimann. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 41:123–129 (1991).
18. H. Hatano, T. Chaya, S. Watanabe, and K. Jinbo. IEEE Trans. Ultrason., Ferroelect., Freq. Contr.
45:1221–1228 (1998).