Simplified Method for Complete Characterization of an Ultrasonic NDE Measurement System

The electroacoustic measurement model (EAM model) is a model that combines models and measurements for all the electrical and electromechanical components and the acoustic= elastic wave propagation and scattering processes present in an ultrasonic measurement system to predict the measured output voltage. A new approach for implementing the EAM model is described. This approach uses a recently developed model-based pulse–echo method for determining the transducer electrical impedance and sensitivity. This method greatly simplifies the determination of the transducer sensitivity and as a consequence makes the entire EAM model more practical to implement. The experimental protocols needed to implement this simplified EAM model are described, and examples of experimentally determined characteristics of all the different system components are presented. These measured=modeled parameters of the system components are combined to predict the output signal in an ultrasonic immersion measurement system. It is shown that output signals obtained in this fashion agree well with the directly measured signals.

References
1. L. J. Ziomek. Underwater Acoustics—A Linear Systems Theory Approach. Academic Press, New York (1985). 2. W. Sachse and N. N. Hsu. In Physical Acoustics—Principles and Methods, W. P. Mason and E. N. Thurston (eds.), vol. 14, pp. 277–406 (1979). Academic Press, New York. 3. B. A. Auld. Wave Motion 1:3–10 (1979). 4. L. W. Schmerr. Fundamentals of Ultrasonic Nondestructive Evaluation—A Modeling Approach. Plenum Press, New York (1998). 5. C. J. Dang, L. W. Schmerr Jr., and A. Sedov. Res. Nondestr. Eval. 14:141–176 (2002). 7. C. J. Dang, L. W. Schmerr Jr., and A. Sedov. Res. Nondestr. Eval., 14:203–228 (2002). 8. W. R. MacLean. J. Acoust. Soc. Am. 12:140–146 (1940). 9. A. Lopez-Sanchez and L. W. Schmerr. IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 53:2101–2112 (2006). 10. M. Greenspan. J. Acoustic. Soc. Am. 65:608–621 (1979). 11. A. L. DiMattia and F. M. Wiener. J. Acoust. Soc. Am. 18:341–344 (1946). 12. P. Ebaugh and R. E. Mueser. J. Acoust. Soc. Am. 19:695–700 (1947). 13. W. Wathen-Dunn. J. Acoust. Soc. Am. 21:542–546 (1949). 14. K. Brendel and G. Ludwig. Acustica 36:203–208 (1976=77). 42 A. L. LOPEZ-SANCHEZ AND L. W. SCHMERR JR. 6. C. J. Dang, L. W. Schmerr Jr., and A. Sedov. Res. Nondestr. Eval. 14:177–201 (2002). 7. C. J. Dang, L. W. Schmerr Jr., and A. Sedov. Res. Nondestr. Eval., 14:203–228 (2002). 8. W. R. MacLean. J. Acoust. Soc. Am. 12:140–146 (1940). 9. A. Lopez-Sanchez and L. W. Schmerr. IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 53:2101–2112 (2006). 10. M. Greenspan. J. Acoustic. Soc. Am. 65:608–621 (1979). 11. A. L. DiMattia and F. M. Wiener. J. Acoust. Soc. Am. 18:341–344 (1946). 12. P. Ebaugh and R. E. Mueser. J. Acoust. Soc. Am. 19:695–700 (1947). 13. W. Wathen-Dunn. J. Acoust. Soc. Am. 21:542–546 (1949). 14. K. Brendel and G. Ludwig. Acustica 36:203–208 (1976=77). 15. G. E. Dace, R. B. Thompson, and O. Buck. In Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D. Chimenti (eds.), vol. 11B, pp. 2069–2076 (1992). Plenum Press, New York. 16. H. J. Kim, J. S. Park, S. J. Song, and L. W. Schmerr. J. Nondestr. Eval. 23:81–93 (2004). 17. B. Fay and H. P. Reimann. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 41:123–129 (1991). 18. H. Hatano, T. Chaya, S. Watanabe, and K. Jinbo. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 45:1221–1228 (1998).
Metrics
Usage Shares
Total Views
9 Page Views
Total Shares
0 Tweets
9
0 PDF Downloads
0
0 Facebook Shares
Total Usage
9