Article Article
Multi-Gaussian Beam Modeling for Multilayered Anisotropic Media, I: Modeling Foundations

A model is developed for the propagation and reflection=transmission of Gaussian beams in multilayered media where the layer materials can be general anisotropic, homogeneous elastic solids and the layer interfaces can be curved surfaces. It is shown that the Gaussian beams can be simply described in a set of slowness coordinates and that the complications arising from the multiple layers can be efficiently addressed through the use of an ABCD matrix approach. A multi-Gaussian beam model for an ultrasonic piston transducer radiating into very complex media is then developed by superimposing a small number of these propagating Gaussian beams.

References
1. R. B. Thompson and E. F. Lopes. In Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D. E. Chimenti (eds.), vol. 5A, pp. 117–125 (1986). Plenum Press, New York. 2. B. P. Newberry and B. R. Thompson. J. Acoust. Soc. Am. 85:2290–2300 (1989). 3. J. J. Wen and M. A. Breazeale. J. Acoust. Soc. Am. 83:1752–1756 (1988). 4. J. J. Wen and M. A. Breazeale. In Computational Acoustics, D. Lee, A. Cakmak, and R. Vichnevetsky (eds.), vol. 2, pp. 191–196. (1990). Elsevier Science, Amsterdam. 5. D. Ding, Y. Zhang, and J. Liu. Acoust. Soc. Am. 113:3043–3048 (2003). 6. H. Kim, L. W. Schmerr, and A. Sedov. J. Acoust. Soc. Am. 119:1971–1978 (2006). 7. M. Spies. J. Acoust. Soc. Am. 95:1748–1760 (1994). 8. M. Spies and M. Kroning. In Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D. E. Chimenti (eds.), vol. 18B, pp. 1107–1114 (1999). American Institute of Physics, Melville, New York. 9. M. Spies. J. Acoust. Soc. Am. 105(2):633–638 (1999). 10. M. Spies. Ultrasonics 42:213–219 (2004). 11. A. N. Norris. Wave Motion 9(2):509–532 (1987). 12. V. Cerveny. Seismic Ray Theory. Cambridge University Press, Cambridge, U.K., (2001). 13. R. Huang, L. W. Schmerr, and A. Sedov. R. NDE 16(4):143–174 (2005). 14. M. Rudolph. Ultrasonic Beam Models in Anisotropic Media. PhD thesis, Iowa State University (1999). 15. P. M. Shearer and C. H. Chapman. Geophys. J. Int. 96:51–64 (1989). 16. M. Spies. J. Acoust. Soc. Am. 110(1):68–79 (2001). 17. S. I. Rokhlin, T. K. Bolland, and L. Adler. J. Acoust. Soc. Am. 79(4):906–918 (1986). 18. E. G. Henneke II. J. Acoust. Soc. Am. 51(1):210–217 (1972). 19. M. J. P. Musgrave. Crystal Acoustics. Holden-Day, San Francisco (1970). 20. A. E. Siegman. Lasers. University Science Books, Sausalito, CA (1986). 21. G. A. Korn and T. M. Korn. Mathematical Handbook for Scientists and Engineers. McGraw-Hill, New York (1968).
Metrics
Usage Shares
Total Views
71 Page Views
Total Shares
0 Tweets
71
0 PDF Downloads
0
0 Facebook Shares
Total Usage
71