A multi-Gaussian beam model is used to simulate an immersion transducer radiating into an
anisotropic solid through a curved fluid–solid interface. It is shown that the characteristics of
the beam as it propagates in the solid are controlled by the properties of the slowness surface
and the interface geometry. Methods are discussed for efficiently extracting the slowness
surface properties including the development of an explicit expression for the curvature of
the slowness surface. A number of numerical examples are presented to demonstrate the
effects that both the slowness surface and interface geometry have on an ultrasonic beam.
1. R. Huang, L. W. Schmerr, and A. Sedov. R. NDE. 18(4):193–220.
2. J. J. Wen and M. A. Breazeale. J. Acoust. Soc. Am. 83(5):1752–1756 (1988).
3. R. Huang, L. W. Schmerr, and A. Sedov. R. NDE 16(4):143–174 (2005).
4. A. H. Nayfeh. Wave Propagation in Layered Anisotropic Media with Application to Composites.
Elsevier, Amsterdam (1995).
5. A. Minachi, Z. You, and B. R. Thompson. IEEE Transaction on Ultrasonics 40(4):338–346 (1993).
6. B. P. Newberry and B. R. Thompson. J. Acoust. Soc. Am. 85(6):2290–2300 (1989).
7. R. B. Thompson and B. R. Newberry. In Review of Progress in Quantitative Nondestructive
Evaluation, D. O. Thompson and D. E. Chimenti (eds.), vol. 7A, pp. 31–39 (1988). Plenum Press,
New York.
8. M. Rudolph. Ultrasonic Beam Models in Anisotropic Media. Ph. D. thesis, Iowa State University
(1999).
9. D. Royer and E. Dieulesaint. Elastic Waves in Solids I. Springer-Verlag, Berlin (2000).
10. M. J. P. Musgrave. Crystal Acoustics. Holden-Day, San Francisco (1970).
11. V. Cerveny. Seismic Ray Theory. Cambridge University Press, Cambridge, U.K. (2001).
12. T. P. Lerch, L. W. Schmerr, and A. Sedov. In Review of Progress in Quantitative Nondestructive
Evaluation, D. O. Thompson and D. E. Chimenti (eds.), vol. 17A, pp. 923–930 (1998). Plenum Press,
New York.
13. H. Jeong, M. Park, and L. W. Schmerr. In Review of Progress in Quantitative Nondestructive
Evaluation, D. O. Thompson and D. E. Chimenti (eds.), vol. 24 A, pp. 986–993 (2005). American
Institute of Physics, Melville, New York.