Improved Rayleigh Wave Velocity Measurement for Nondestructive Early-Age Concrete Monitoring

A modified one-sided technique is proposed for Rayleigh wave (R-wave) velocity measurement in concrete. Wave scattering from material heterogeneity and near-field effects may disrupt sensed R-wave signals in concrete, which is manifested as signal dispersion. Conventional one-sided measurement techniques for concrete do not consider dispersion of R-waves. In this study, the maximum energy arrival concept is adopted to determine the wave velocity by employing continuous wavelet transform. Experimental and numerical studies are performed to show the effectiveness of the proposed method. The method is applied to monitor the strength development of early-age concrete exposed to various curing conditions. Results reveal that the proposed method can be effectively used to measure the R-wave velocity in concrete structures and further to monitor the development of compressive strength in early-age concrete, regardless of the concrete moist curing condition.

1. S. Mindess, J. F. Young, and D. Darwin. Concrete. Prentice Hall, NJ (2003). 2. A. M. Neville. Properties of Concrete. Pitman Publishing, Marshfield, MA (1981). 3. J. K. Kim, Y. H. Moon, and S. H. Eo. Cement and Concrete Research 28:1761 (1998). 4. T. Voigt, Y. Akkaya, and S. P. Shah. Journal of Materials in Civil Engineering 15:247 (2003). 5. ACI Committee 228. Report 228.1R-03. American Concrete Institute: Farmington Hills, MI (2003). 6. KCI Committee. Concrete Diagnosis and Maintenance. Korean Concrete Institute: Seoul, Korea (2003). 7. S. Pessiki and M. R. Johnson. ACI Materials Journal 93:260 (1996). 8. H. K. Lee, H. J. Yim, and K. M. Lee. ACI Materials Journal 100:49 (2003). 9. M. J. Sansalone and W. B. Streett. IMPACT-ECHO. Bullbrier Press, Ithaca, PA (1997). 10. T. T. Wu, J. S. Fang, G. Y. Liu, and M. K. Kuo. Journal of the Acoustical Society of America 98:2142 (1995). 11. J. S. Popovics, W. Song, J. D. Achenbach, J. H. Lee, and R. F. Andre. Journal of Engineering Mechanics 124:1346 (1998). 12. A. J. Boyd and C. C. Ferraro. Journal of Materials in Civil Engineering 17:153 (2005). 13. Karl F. Graff. Wave Motion in Elastic Solids. Ohio State University Press, Columbus, OH (1975). 14. H. C. Park. Ph.D. Dissertation, Korea Advanced Institute of Science and Technology, Korea, (2001). 15. K. V. Wijk and A. L. Levshin. Geophysical Research Letters 31:L20602 (2004). 16. E. P. Papadakis. Journal of the Acoustical Society of America 37:711 (1965). 17. J. S. Popovics. Journal of the Acoustical Society of America 100:3451 (1996). 18. H. A. Pedersen, J. I. Mars, and P. O. Amblard. Geophysics 68:677 (2003). 19. Y. Y. Kim and E. H. Kim.Journal of the Acoustical Society of America 110:86 (2001). 20. S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, Boston, MA (1999). 21. MATLAB Wavelet Toolbox. Mathworks Inc. Natick, MA (2006). 22. A. Zerwer, M. A. Polak, and J. C. Santamarina. Journal of Nondestructive Evaluation 22(2):39 (2003). 23. A. Zerwer, G. Cascante, and J. Hutchinson. Journal of Geotechnical and Geoenvironmental Engineering 128(3):250 (2002). 24. W. H. Price. Journal of the American Concrete Institute 22(6):417 (1951). 25. T. R. Naik, W. M. Malhotra, and J. S. Popovics. Handbook on Nondestructive Testing of Concrete, V. M. Malhotra and N. J. Carino (eds.), 2nd ed., Chapter 8. CRC Press, Boca Raton, FL (2004). 26. V. R. Sturrup, F. J. Vecchio, and H. Caratin. In Situ Nondestructive Testing of Concrete, SP-82, V. M. Malhorta (ed.), p. 201. American Concrete Institute, MI (1984).
Usage Shares
Total Views
9 Page Views
Total Shares
0 Tweets
0 PDF Downloads
0 Facebook Shares
Total Usage