Feasibility of a New Moving Collimator for Industrial Backscatter Imaging

Conventional direct radiography may fail to successfully produce images of corrosion in large pipes containing liquid and in tanks because the attenuation can be very high. It also fails when either side of the object is not accessible. These limitations do not exist in backscatter imaging because it is a one-sided imaging technique. However, backscatter imaging can be slow. In this study, the feasibility of a new backscatter imaging system based on a mov-ing collimator that can produce images quickly is studied. Backscattered radiation from a broad-beam industrial X-ray machine is collimated by a special collimator to allow only parallel scattered radiation to pass and reach the image plate. Because part of the backscattered radiation can be stopped by the collimator septa, the collimator is put into motion; this allows a complete image to be revealed. An electro-mechanical system is designed to move the collimator either in steps or continuously. The distance, speed and direction of the movement are controlled by a smart motor using LabVIEW. Images of Polyvinylchloride (PVC) and aluminum objects are shown. Moving collimators can be added to existing radiographic systems to make them useful for both direct and backscatter imaging.

References

[1] G. Harding and E., Harding. Appl. Radiat. Isot. 68:993–1005 (2010).

[2] G. Harding. Radiat. Phys. Chem. 71:869–881 (2004).

[3] G. Harding. Phys. Chem. 50:91–111 (1997).

[4] T. Jackson, D. Hollenbach, and D. Shedlock. Res. Nondestr. Eval. 22:231–247 (2011).

[5] S. Abdul-Majid and A. Balamesh. 6th Middle East Nondestructive Conference and Exhibition 2012, American Society of Non-Destructive Testing, Bahrain, October 7–10, 2012.

[6] E. C. Greenawald, E. T. Bellinger Jr., L. J. Levenberry, and C. F. Poranski Jr. Characterization of X-Ray Backscatter Tomography System Performance in Review of Progress in Quantitative Nondestructive Evaluation.D.O.ThompsonandD. E. Chimenti,eds., Vol. 18, pp.2055–2062. Norwell, MA: Kluwer Academic/Plenum Publishers (1999).

[7] S. Abdul-Majid and A. Balamesh. Res. Nondestr. Eval. 25:172–185 (2014).

[8] S. Abdul-Majid, A. Balamesh, D. Al Othmany, A. Alassiaa, and H. Al-Huraibi. Res. Nondestr. Eval. 26:43–59 (2015).

[9] V. E. Stepanov, O. P. Ivanov, V. N. Potapov, A. N. Sudarkin, and L. I. Urutskoev. Nucl. Instrum. Meth. A. 422:724–728 (1999).

[10] R. S. Holt and M. J. Cooper. Nucl. Instrum. Meth. in Physics Research 221:98–104 (1984).

[11] X. Xu, R. Gould, S. Khan, E. H. Klevans, and E. S. Kenney. Nucl. Instrum. Meth.A. 353:334–337 (1994).

[12] H. Lee and E. S. Kenney. Nucl. Technol. 100:70–78 (1992).

[13] Z. Asa’d, M. Asghar, and D. C. Imrie. Meas. Sci. Technol. 8:377–385 (1997).

[14] A. Sharma, B. S. Sandhu, and A. Singh. Appl. Radiat. Isot. 68:2181–2188 (2010).

[15] E. E. Fenimore and T. M. Cannon. Appl. Opt. 17:337–347 (1978).

[16] K. P. MacCabe, A. D. Holmgren, M. P. Tornai, and D. J. Brady. Appl. Opt. 52:4582–4589 (2013).

[17] K. MacCabe, K. Krishnamurthy, A. Chawla, D. Marks, E. Samei, and D. Brady. Optics Express 20:16310–16320 (2012).

[18] W. R. Scott. Master’s, University of Ontario Institute of Technology, Oshawa, Ontario, Canada (2011).

[19] S. Kolkoori, N. Wrobel, U. Zscherpel, and U. Ewert. NDT&E INT, 70:41–52 (2015).

[20] S. Kolkoori, N. Wrobel, U. Zscherpel, and U. Ewert. 11th European Conference on Non-Destructive Testing (ECNDT 2014), Prague, Czech Republic, October 6–10, 2014.

[21] N. Wrobel, K. Osterloh, M. Jechow, and U. Ewert. 18th World Conference of Non Destructive Testing, Durban, South Africa, April 16–20, 2012.

[22] K. Osterloh, U. Zscherpel, M. Jechow, D. Fratzscher, N. Wrobel, and U. Ewert. Proceedings of 10th European Conference on Nondestructive Testing (ECNDT), pp. 1–8, Moscow, Russia (2010).

[23] S. Kolkoori, N. Wrobel, K. Osterloh, U. Zscherpel, and U. Ewert. J. Instrum. 8:1–18 (2013).

[24] M. D. Herr, J. J. McInerney, D. G. Lamser, and G. L. Copenhaver. A flying spot x-ray for Compton backscatter imaging. IEEE T. Med. Imaging 13:461–469 (1994).

[25] D. Shedlock. Ph.D. dissertation, University of Florida (2007).

[26] C. L. Meng. Master of Science Dissertation, University of Florida (2008).

[27] U. Ewert, U. Zscherpel, K. Heyne, M. Jechow, and K. Bavendik. Mater. Eval. 68:163–168 (2010).

[28] U. Ewert, U. Zscherpel, K. Heyne, M. Jechow, and K. Bavendik. Mater. Eval. 70:955–964 (2012).

[29] R. Faezeh, A. S. Sadat, B. Esmaiel, and D. M. Vahid.. Nucl. Instrum. Meth. A. 812:86–91 (2016).

[30] S. Abdul-Majid and A. Balamesh. U.S. Patent number 8976936 (March 10, 2015).

[31] S. Abdul-Majid and W. H. Abulfaraj. Arab. J. Sci. and Engineering 13:385–394 (1988).

Metrics
Usage Shares
Total Views
93 Page Views
Total Shares
0 Tweets
93
0 PDF Downloads
0
0 Facebook Shares
Total Usage
93