Characterization of Hydrogen Embrittlement in 2.25cr-1mo-0.25v Steel by Eddy Current Method

Eddy current method has been recently developed to characterize mechanical properties of materials and assess internal hydrogen content of high strength low alloy steels. The application of eddy current testing in evaluating hydrogen embrittlement state of 2.25Cr-1Mo-0.25V ferritic steel has been investigated using tensile test and electrochemical hydrogen charging test. The relationship between the embrittlement index and eddy current signal is well established. It found that there is a good linear relation between the hydrogen-induced plasticity loss and the eddy current signal. This shows eddy current testing is an effective method for evaluating hydrogen embrittlement state of 2.25Cr-1Mo-0.25V steel.

References

  1. Z. Yongtao, H. Haibo, M. Lede, Z. Hanqian, and L. Jinfu. Mater. Charact. 60(9):953–956 (2009).
  2. S. A. J. Jahromi, and M. Najmi. Eng. Fail. Anal. 14(1):164–169 (2007).
  3. M. B. Djukic, V. Sijacki Zeravcic, G. M. Bakic, A. Sedmak, and B. Rajicic. Eng. Fail.Anal. 58:485–498 (2015).
  4. L. Fournier, D. Delafosse, and T. Magnin. Mat. Sci. Eng. A-Struct. 269 (1–2):111–119(1999).
  5. N. Eliaz, A. Shachar, B. Tal, and D. Eliezer. Eng. Fail. Anal. 9(2):167–184 (2002).
  6. X. Yue, and J. C. Lippold. Weld. J. 92 (1):20s–28s (2013).
  7. J. Chen, T. Muroga, S. Qiu, Y. Xu, Y. Den, and Z. Xu. J. Nucl. Mater. 325(2–3):79–86(2004).
  8. P. A. S. Pereira, C. S. G. Franco, J. L. M. Guerra Filho, and D. S. dos Santos. Int. J. Hydrogen Energy 40 (47):17136–17143 (2015).
  9. C. San Marchi, B. P. Somerday, X. Tang, and G. H. Schiroky. Int. J. Hydrogen Energy 33 (2):889–904 (2008).
  10. J. Sanchez, S. F. Lee, M. A. Martin-Rengel, J. Fullea, C. Andrade, and J. Ruiz-Hervias. Eng. Fail. Anal. 59:7–477 (2016).
  11. K. Koenig, A. N. Lasseigne, J. W. Cisler, B. Mishra, R. H. King, and D. L. Olson. Int. J. Press. Vessels Pip. 87(11):605–610 (2010).
  12. P. K. De, J. T. John, S. Banerjee, T. Jayakumar, M. Thavasimuthu, and B. Raj. J. Nucl. Mater. 252 (1–2):43–54 (1998).
  13. M. Sheikh Amiri, and M. Kashefi. NDT&E Int. 42(7):618–621 (2009).
  14. S. Konoplyuk, T. Abe, T. Uchimoto, T. Takagi, and M. Kurosawa. NDT&E Int. 38(8):623–626 (2005).
  15. X. Chen, and Y. Lei. NDT&E Int. 75:33–38 (2015).
  16. L. Marchetti, E. Herms, P. Laghoutaris, and J. Chne. Int. J. Hydrogen Energy 36(24):15880–15887 (2011).
  17. J. T. Brown, and J. W. M. Baldwin. Trans. AIME 200:298 (1954).
  18. J. Capelle, I. Dmytrakh, and G. Pluvinage. Corros. Sci. 52(5):1554–1559 (2010).
  19. A. Turnbull. Int. J. Hydrogen Energy 40(47):16961–16970 (2015).
  20. M. A. Arafin, and J. A. Szpunar. Mat. Sci. Eng. A-Struct. 528(15):4927–4940 (2011).

 

Metrics
Usage Shares
Total Views
5 Page Views
Total Shares
0 Tweets
5
0 PDF Downloads
0
0 Facebook Shares
Total Usage
5