Evaluation of Bonding Quality in the Carbon Fiber–Reinforced Polymer (CFRP) Composite Laminates by Measurements of Local Vibration Nonlinearity

A new approach to monitoring the quality of adhesive bonding in the carbon fiber–reinforced polymer (CFRP) is developed by using a local nonlinear response of the laminate. It is shown that a degraded (contaminated) boundary layer of the adhesive contributes to an overall nonlinear response of the laminate that enables to evaluate and quantify bonding quality caused by various types and levels of single contaminations. In the context of aviation applications, two typical stages during the life of a structural part for which the adhesive properties of a bonding joint could be degraded were considered: the production process and the maintenance/repair scenario. All kinds of single contaminations studied result in enhancement of the nonlinear response of the CFRP laminate, which is an indication of deterioration of the bonding quality. The effect of multiple contaminations confirms a cumulative decline of adhesion caused by increase of the contents of single contamination components.


[1] H. N. G. Wadley, Rev. Prog. Quantitative Nondestructive Eval. 7, 881 (1988).

[2] P. Nagy, Ultrasonics. 36, 375 (1998). DOI: 10.1016/S0041-624X(97)00040-1.

[3] M. A. Breazeale and J. Philip, Physical Acoustics, v. XVII, Ed W. P. Mason (Academic Press, New York, 1965).

[4] A. Gedroitz and V. A. Krasilnikov, Soviet Physics JETP. 16, 1122 (1963).

[5] W. T. Yost and J. Cantrell, Rev. Prog. Quantitative Nondestructive Eval. 9, 1669 (1990).

[6] J. Cantrell and W. T. Yost, J. Appl. Phys. 81, 2957 (1997). DOI: 10.1063/1.364327.

[7] J.-Y. Kim et al., Int. J. Solids and Structures. 43, 6436 (2006). DOI: 10.1016/j.ijsolstr.2005.11.006.

[8] P. Johnson and R. Guyer, Nonlinear Mesoscopic Elasticity (Wiley VCH Verlag, Weinheim, 2009).

[9] I. Solodov, Ultrasonics. 36, 383 (1998). DOI: 10.1016/S0041-624X(97)00041-3.

[10] I. Solodov, N. Krohn, and G. Busse, Ultrasonics. 40, 621–625 (2002). DOI: 10.1016/S0041-624X(02)00186-5.

[11] J. D. Achenbach and O. K. Parikh, Review of Progress in Quantitative Nondestructive Evaluation. 10 B, 1837 (1991).

[12] A. Zhiwu et al., Wave Motion. 50, 295–309 (2013). DOI: 10.1016/j.wavemoti.2012.09.004.

[13] C. Bermes et al., Appl. Phys. Lett. 90 (2), 021901 (2007). DOI: 10.1063/1.2431467.

[14] W. Li, Y. Cho, and J. D. Achenbach, Smart Mater. Struct. 21, 085019 (2012). DOI: 10.1088/


[15] J. Zhao et al., J. Appl. Phys. 119, 064902 (2016). DOI: 10.1063/1.4941390.

[16] D. Yan, S. A. Neild, and B. W. Drinkwater, NDT&E Int. 47, 18–25 (2012). DOI: 10.1016/j.ndteint.2011.12.003.

[17] N. Krohn, R. Stossel, and G. Busse, Ultrasonics. 40, 633–637 (2002). DOI: 10.1016/S0041-624X(02)00188-9.

[18] A. Klepka et al., Composites Part B: Engineering. 65, 99–108 (2014). DOI: 10.1016/j.compositesb.2013.11.003.

[19] P. Malinowski et al., Proceedings of the SPIE Smart Structures/NDE (SPIE, Bellingham, Washington, USA, 2017). DOI: 10.1117/12.2259852.

[20] Y. Zheng, R. Maev, and I. Solodov, Can. J. Phys. 77, 927–967 (1999). DOI: 10.1139/cjp-77-12-927.

Usage Shares
Total Views
8 Page Views
Total Shares
0 Tweets
0 PDF Downloads
0 Facebook Shares
Total Usage