Ultrasonic Velocity and Attenuation in Epoxy Resin/Granite (Marble) Powder Composite

In this research, gamma radiation has been used to graft styrene and acrylic acid monomers onto marble (M) and granite (G) powder, with irradiation doses 30, 10 kGy, respectively. The grafted marble and granite powders were used as filler of epoxy composites. They added to an epoxy resin at 20, 60, and 100 wt% and then cured at room temperature. Ultrasonic velocities and attenuation measurements in epoxy composites at 4 MHz in the 25–300°C temperature range in addition to Fourier Transform Infrared (FTIR) analysis had been investigated. The ultrasonic compression wave velocity and the shear wave velocity measurements were performed using the pulse-echo technique, and then wecalculated elastic modulus, Young’s modulus, longitudinal and shear moduli, and Poisson’s ratio. In addition to attenuation at different temperatures of epoxy/granite composites, ultrasonic results indicated that the ultrasonic wave’s velocities VL and Vs increased with the increase of (M, G) content and a linear relation was observed. Also, the attenuation of epoxy was stable and appeared to increase at temperature 385°C, while the addition M or G to epoxy composites increased the attenuation.

References
  1. A. Vary. Nondestructive evaluation technique guide, NASA SP-3079 (1973).
  2. J. H. Williams, Jr. and D. M. Egan. Mater. Eval. 37:43 (1979).
  3. G. Sharma, V. Rajendran, K. S. Thind, G. Singh, and A. Singh. Physica B 404:3371 (2009).
  4. W. Da-yan, Z. Yuan-lin, M. Wei, and N. Yong-hong. Cold Regions Science and Technology 44:12 (2006).
  5. E. J. Friebele, D. R. Uhlmann, and N. J. Kreidl (eds.). Optical Properties of Glass. The American Ceramic Society, Weserville, OH (1991).
  6. G. Sharma, K. Singh, Manupriya, S. Mohan and S. B. Narang. Radiat. Phys. Chem. 75:959 (2006).
  7. G. Sharma, K. Singh, H. Klare, V. Rajendran, A. Gayathri, and S. Narang. Phys. Stat. Sol. (a) 202:2720 (2005).
  8. S. A. Nadia and A. A. Hesham. Archives of Acoustics 34:641–654 (2009).
  9. H. A. Afifi. Polymer-Plastics Technology and Engineering 42:193–205 (2003).
  10. E. J. Friebele, Radiation effects. In Optical Properties of Glass. D.R. Uhlmann, N. J. Kreidl, (eds.). American Ceramic Society, Westerville, OH (1991).
  11. G. Sharma, K. S. Thind, K. Manupriya, H. S. Narang, S. B., Gerward, L., and Dangwal, V. K. Nucl. Instrum. Methods Phys. Res., Sect. B, 243:345–348 (2006).
  12. A. Lashin. Reservoir parameter estimation using well logging data and production history of the Kalderholt geothermal filed. S-Iceland, UNU-GTP, Iceland (2005), p. 12.
  13. M. A. Sidkey, R. A. EL-Mallawany, A. EL-Salam, M. Abousehly, and Y. B. Saddeek. Glass Sci. Technol., 75:87–93 (2002).
  14. V. C. Veeranna, Gowda, R. V. Anavekar, and K. J. J. Rao. Non-Cryst. Solids 351:3421– 3429 (2005).
  15. A. H. Deliormanli, L. Burlini, and A. B. Yavuz. International Journal of Rock Mechanics and Mining Sciences 44:279–288 (2007).
  16. B. Bridge, N. D. Patel, and D. N. Water. Phys. Stat. Sol. (a) 77:655–668 (1983).
  17. A. Jiménez, M. Montaña Rufo, J. M. Paniagua, and A. Antolín. Proceedings of 20th International Congress on Acoustics ICA 2010, August 23–27, 2010, Sydney, Australia.
  18. S. Chaki, M. Takarli, and W. P. Agbodjan. Construction and Building Materials 22:1456–1461 (2008).
  19. W. Koltonski and I. Malecki. Acta Acustica united with Acustica 8:307–314 (1958).
  20. F. Jin and S. Park. Bull. Korean Chem. Soc. 30:334–338 (2009).
  21. J. Ruller and J. Friebele. J. Non-Cryst. Solids 136:163–172 (1991).
  22. B. Qi, Q. X. Zhang, B. M. Bannister, and Y.-W. Mai. Compos. Struct. 75:514–519 (2006)
Metrics
Usage Shares
Total Views
120 Page Views
Total Shares
0 Tweets
120
0 PDF Downloads
0
0 Facebook Shares
Total Usage
120